
Fine-Tuning and Prompt Optimization:
Two Great Steps that Work Better Together

Dilara Soylu Christopher Potts Omar Khattab

Stanford University

{soylu,cgpotts,okhattab}@stanford.edu

Abstract
Natural Language Processing (NLP) systems
are increasingly taking the form of sophisti-
cated modular pipelines, e.g., Retrieval Aug-
mented Generation (RAG), where each module
may involve a distinct Language Model (LM)
and an associated prompt template. These com-
pound systems often lack intermediate labels
or gradient flow to optimize each module, mak-
ing their end-to-end optimization challenging.
Here we seek strategies to optimize both the
module-level LM weights and the associated
prompt templates of such systems to maximize
a downstream task metric. We propose for the
first time combining the weight and prompt
optimization strategies to optimize a modular
LM pipeline by alternating between the two
to get the same LM to teach itself. In experi-
ments with multi-hop QA, mathematical rea-
soning, and feature-based classification using
mistral-7b, llama-2-7b, and llama-3-8b,
these BetterTogether strategies optimizing
the weights and prompts of a pipeline together
outperform directly optimizing weights alone
and prompts alone by up to 60% and 6%, re-
spectively, on average across LMs and tasks.
Our BetterTogether optimizer is released in
DSPy at http://dspy.ai.

1 Introduction

While the capabilities of language models (LMs)
continue to grow, recent work has shown the poten-
tial of building more powerful Natural Language
Processing (NLP) systems by composing multi-
ple skills of LMs into pipelines. Examples of this
include systems for retrieval-augmented genera-
tion (Guu et al., 2020; Lewis et al., 2020; Ma et al.,
2023; Jiang et al., 2023b), multi-hop reasoning (Qi
et al., 2021; Khattab et al., 2021), information ex-
traction (Pourreza and Rafiei, 2023; D’Oosterlinck
et al., 2024), and other sophisticated pipelines (Ze-
likman et al., 2022; Dohan et al., 2022; Khattab
et al., 2022; Beurer-Kellner et al., 2023; Schlag
et al., 2023; Viswanathan et al., 2023).

Such LM Programs offer much more control
for designing NLP systems, as they break down
problems into modular, more manageable sub-tasks
that can be assigned to LMs. If we could teach
these LMs to accurately conduct their easier sub-
tasks and to communicate effectively within multi-
stage pipelines, this could greatly expand the scope
of reliable NLP systems we can build.

To this end, Khattab et al. (2024) introduced the
DSPy framework for defining and optimizing LM
Programs. In it, a program is defined as a function
Φ that composes a set of stages, which we will re-
fer to as language modules M = ⟨M1, . . . ,M|M |⟩,
into a pipeline. Each language module Mi speci-
fies a fuzzy natural-language transformation (e.g.,
generating a summary of a supplied document) that
needs to be learned. To do so, each module learns
a particular prompt (template) π to make a call to
a particular LM with weights θ. The optimization
problem is then defined as maximizing the expected
performance (per a downstream metric µ) of the
program Φ over a set of inputs by updating each
module’s π and θ.

Existing work (Khattab et al., 2024; Opsahl-Ong
et al., 2024) has studied optimizing the discrete
string prompt of each module and has considered
simple approaches for fine-tuning each module’s
LM weights. In this empirical study, we investigate
updating each module’s LM weights and prompt
template together to maximize a downstream met-
ric on the final output of the program. Doing this
is challenging as Φ is not generally differentiable
and its modules Mi generally lack labeled outputs,
while exhibiting sophisticated dependencies. More-
over, in realistic settings, the training set is usually
very small and only a small number of LM calls
are possible for training and inference.

To address this challenge, we propose to al-
ternate between fine-tuning LM weights and op-
timizing prompt templates and evaluate approxi-
mate optimization strategies in which we bootstrap

ar
X

iv
:2

40
7.

10
93

0v
2

 [
cs

.C
L

]
 7

 O
ct

 2
02

4

http://dspy.ai

training labels for all pipeline modules. In experi-
ments with multi-hop QA (HotPotQA), mathemat-
ical reasoning (GSM8K), and feature-based classifi-
cation (Iris), we show that these tandem strate-
gies are highly effective across three different
LMs, leading to 5–78% gains for HotPotQA, 2.5–
10% gains for GSM8K, and 3.5–88% gains for Iris
against prompts only and weights only strategies,
averaged across mistral-7b-instruct-v0.2,
llama-2-7b-chat, and llama-3-8b-instruct.

2 Problem Statement

We are given an LM program Φ, which operates
like a blackbox function Φ : X → Y , in which
X and Y are typically in natural language (e.g.,
questions and their program-generated answers, re-
spectively). For example, we may have a program
Φ for answering complex questions with short fac-
toid answers. In the course of its execution, Φ
makes one or more calls to each of its |M | ≥ 1
language modules, M = ⟨M1, . . . ,M|M |⟩.

For example, the program may implement a
multi-hop, retrieval-augmented pipeline for ques-
tion answering. This common pipeline (Qi et al.,
2021; Khattab et al., 2021; Press et al., 2023; Khat-
tab et al., 2022) breaks down the input into sub-
questions that are used to iteratively find relevant
passages (e.g., from a corpus like Wikipedia) until
the question can be faithfully answered. In general
terms, each module Mi : Xi → Yi is a declara-
tive LM invocation that defines, in inherently fuzzy
natural-language terms, an input Xi domain (like a
user-supplied question and a set of retrieved pas-
sages) and an output Yi co-domain (like a search
query to find additional relevant passages).

We seek to implement each language module as
some specific, well-tuned strategy for invoking an
underlying language model LM. Concretely, we
assume that a module Mi will be fully implemented
by specifying (1) the string prompt πi in which
the module inputs Xi are plugged in to decode
the module outputs Yi and (2) the floating-point
weights θi assigned to the parameters of LM in the
course of this module. We refer to the version of Φ
in which the prompts and LM weights are assigned
explicitly to Π and Θ, respectively, as Φ⟨Θ,Π⟩.

Given nothing but a small training set X =
{(x1,m1), . . . , (x|X|,m|X|))} of inputs xi ∈ X
and optional metadata like output labels or other
hints mi ∈ M that can be used for determining the
correctness of a given program run, and a metric

µ : Y ×M → R, our goal is to optimize Φ, that is,
configure its modules’ prompts and LM weights to
maximize the following objective.

argmax
Θ,Π

1

|X|
∑

(x,m)∈X

µ(Φ⟨Θ,Π⟩(x),m)

Researchers tuning LM pipelines are in effect
seeking to achieve this objective. It is also a very
large subspace of the optimization problem in the
DSPy framework1 for LM programs. Unfortu-
nately, this problem is intractable: the search space
is large and we don’t have gradients or intermediate
output labels to optimize each module, so we seek
approximate strategies for such optimization.

3 BetterTogether: Alternating Weight
and Prompt Optimization Steps for LM
Programs

We now introduce the BetterTogether algorithm,
which alternates the weight and prompt optimiza-
tion steps for LM programs. We hypothesize that,
when a large LM is used to teach itself how to
tackle the task defined by an LM program, fine-
tuning LM weights and prompts are both essential
to achieve the highest quality. In particular, we
expect that (1) prompt optimization before fine-
tuning can lead to more successful datapoints for
fine-tuning, and, (2) prompt optimization after fine-
tuning can make adjustments to the behavior of
the LM program, leading to higher quality outputs.
Considering that fine-tuning is often perceived as
a more powerful tool, this can be surprising, espe-
cially when both approaches are ultimately applied
over the same set of training inputs X .

Algorithm 1 BetterTogether: Optimizing LM
programs by alternating prompt and weight opti-
mization steps, instantiated in Algorithm 2
Input: Program Φ⟨Θ,Π⟩ = ΦΘ ⊙ ΦΠ,

with module weights Θ = [θ1, . . . , θ|Φ|]
and module prompts Π = [π1, . . . , π|Φ|]

Training Set X and Metric µ

1: function BETTERTOGETHER(Φ⟨Θ,Π⟩, X , µ)
2: Π′ ← OPTIMIZEPROMPTS(Φ⟨Θ,Π⟩ , X , µ)
3: Θ′ ← FINETUNEWEIGHTS(Φ⟨Θ,Π′⟩ , X , µ)
4: Π′′ ← OPTIMIZEPROMPTS(Φ⟨Θ′,Π⟩ , X , µ)
5: return Φ⟨Θ′,Π′′⟩
6: end function

Accordingly, the general optimization frame-
work for our algorithm is defined in Algorithm 1.

1http://dspy.ai

http://dspy.ai

Given a program Φ, the algorithm begins by opti-
mizing Φ’s prompts, then fine-tuning its set of LM
weights with the data bootstrapped using the opti-
mized prompts, and finally optimizing its prompts
again using the fine-tuned weights. In principle,
each of these steps could be treated as optional.
This will define the different possible combinations
of BetterTogether that we will seek to evaluate
in Section 4. Specifically, we are interested in the
quality of (1) the vanilla program Φ with simple
user-supplied instructions as the prompts and no
fine-tuning of LM, (2) optimizing the prompts
only, (3) optimizing the weights only, (4) opti-
mizing the prompts twice, i.e., using the prompt-
optimized Φ as a starting point for a second round
of prompt optimization, (5) optimizing the weights
twice, (6) optimizing the prompts then the weights,
(7) vice versa, and (8) optimizing the prompts,
weights, then prompts. Overall, we expect the final
three to consistently outperform the first five.

For Algorithm 1 to be complete, we need to in-
stantiate Lines 1–3 with specific approaches for
prompt optimization and LM fine-tuning. For this,
we choose the Bootstrap-∗ family of algorithms
from Khattab et al. (2024), which work by execut-
ing an initial version of the program on input exam-
ples (xi,mi) ∈ X and recording the inputs/outputs
observed at each module when the final output is
“correct”, i.e., µ(Φ(xi),mi) ≥ λ for some thresh-
old λ (e.g., 1.0 for binary accuracy). This is impor-
tant to note: in line with our problem formulation,
our prompt and weight optimization regimes are
not simply training on hand-labeled data but on
self-generated program traces.

Instantiations for Lines 1–3 of Algorithm 1 are
shown in Algorithm 2. For prompt optimization,
we use BootstrapFewshotRS (BFRS) of DSPy,
which self-generates potential few-shot examples
of every module and applies a form of random
search (RS) to select the specific generated few-
shot examples that are used for prompting. Overall,
BFRS first divides X into a training split T and a
validation split V (Line 2). It then executes the
provided Φ⟨Θ,Π⟩ on the training inputs, collecting
input–output pairs for every module in Φ for each
xi ∈ T . This is called a trace τ , and we keep
only the traces assigned high scores by µ (Line 4).
Given all of these traces, BFRS samples multiple
different subsets of a few traces τ ′ (Line 6), each of
them containing a potential few-shot example for
each module in Φ, and ultimately selects the sub-
set that, when used to construct few-shot prompts

Algorithm 2 Instantiating Algorithm 1’s prompt &
weight optimizers with bootstrapping algorithms
Input: Training Set X and Metric µ

1: function BOOTSTRAPFEWSHOTRS(Φ⟨Θ,Π⟩, X , µ)
2: T, V ← SPLITINTOTRAINANDVALIDATION(X)
3: τ ← BOOTSTRAPTRACES(Φ⟨Θ,Π⟩ , T)
4: τ ← FILTERTRACES(τ , µ)
5: Initialize attempts list A ← {}
6: for τ ′ ∈ SAMPLEFEWSHOTSUBSETS(τ) do
7: Π′ ← CONSTRUCTFEWSHOTPROMPTS(τ ′)
8: σ ← 1

|V |
∑

⟨xi,mi⟩∈V µ(Φ⟨Θ,Π′⟩(xi),mi)

9: Extend A with (σ,Π′)
10: end for
11: return Πmax, A’s highest-scoring prompts sequence
12: end function
13:
14: function BOOTSTRAPFINETUNE(Φ⟨Θ,Π⟩, X , µ)
15: τ ← BOOTSTRAPTRACES(Φ⟨Θ,Π⟩ , X)
16: τ ← FILTERTRACES(τ , µ)
17: Θ′ ← TRAINLM(τ)
18: return Θ′

19: end function
20:
21: Set OPTIMIZEPROMPTS as BOOTSTRAPFEWSHOTRS
22: Set FINETUNEWEIGHTS as BOOTSTRAPFINETUNE

(Line 7), achieves the highest score (Line 8). This
simple search strategy is known to consistently lead
to large quality improvements in prompting LM
programs (Khattab et al., 2024; Opsahl-Ong et al.,
2024), often outperforming manually or automat-
ically optimizing prompt instructions or writing
examples by hand.

For fine-tuning, we extend BootstrapFinetune
(BFT) of DSPy, which, given a program Φ, self-
generates a large number examples for every mod-
ule and combines them into one dataset to fine-tune
the LM weights with an implicit multi-task objec-
tive, where the sub-tasks are the modules’ roles.
Existing work has only considered BFT in a very
narrow setting for LM programs: on HotPotQA,
Khattab et al. (2024) train a T5-Large model us-
ing traces from a few-shot Llama2-13b program,
without considering getting an LM to teach itself
via BFT nor considering a role for BFRS in the fine-
tuned program. In this work, we focus on allowing
models to teach themselves and self-improve. We
propose for the first time combining the strategies
of BFRS and BFT via alternation to get the same LM
to teach itself better than either prompt or weight
optimization in isolation. One could test similar
ideas in scenarios where a larger model does the
bootstrapping for a smaller LM. This may lead to
even better results but is outside our scope.

Strategy
mistral-7b-instruct-v0.2 llama-2-7b-chat llama-3-8b-instruct

HotPotQA GSM8K Iris HotPotQA GSM8K Iris HotPotQA GSM8K Iris

Baseline Strategies

Vanilla Zero-shot 17.2 40.3 26.0 13.2 24.0 0.0 31.6 72.7 48.0
Prompt Optimization (Π) 33.8 46.4 57.3 33.3 26.0 56.7 46.9 77.9 79.3
Weight Optimization (Θ) 22.9 40.7 29.3 12.2 24.0 – 34.8 75.1 37.3
Π → Π 33.8 47.7 59.3 32.6 24.7 64.0 46.5 77.6 82.0
Θ → Θ 24.0 42.8 38.0 13.0 24.1 – 34.4 44.1 39.3

BetterTogether Strategies

Π → Θ 36.3 47.3 30.7 32.7 27.3 26.7 42.8 77.6 44.0
Θ → Π 33.0 48.3 66.7 34.2 26.6 – 43.6 78.9 78.7
Π → Θ → Π 37.6 46.8 52.7 34.8 26.3 65.3 46.7 77.0 79.3

Table 1: Main Results. Percentage accuracies of baseline and BetterTogether strategies on HotPotQA, GSM8K,
and Iris evaluated on mistral-7b-instruct-v0.2, llama-2-7b-chat, and llama-3-8b-instruct. Reported
are average performance of 3 runs on a held-out test set using different random seeds. Bold font is used to mark the
highest score in a given column. Strategies where weight optimization is the first step use the vanilla (zero-shot)
strategy to generate the initial fine-tuning dataset. If a model generates very few or no correct outputs under the
vanilla strategy on the training set used to bootstrap the fine-tuning data, there will not be a sufficient dataset for
fine-tuning. These settings are marked with “–”.

4 Experimental Evaluation

We now seek to evaluate our hypothesis on the
importance of optimizing both LM weights and
prompts of LM programs. We conduct our evalua-
tion across three datasets that span different tasks
(and thus LM programs) each. In particular, we
use HotPotQA (Yang et al., 2018) for multi-hop rea-
soning, GSM8K (Cobbe et al., 2021) for arithmetic
reasoning, and Iris (Fisher, 1988) for classifica-
tion. We run our experiments using three mod-
els, mistral-7b-instruct-v0.2 (Jiang et al.,
2023a), llama-2-7b-chat (Touvron et al., 2023),
llama-3-8b-instruct (MetaAI, 2024), keeping
the model used for prompt optimization, bootstrap-
ping training traces, and fine-tuning the same in a
given experiment for all modules. We initialize all
the modules of an input program Φ to use the same
LM weights (e.g. mistral-7b-instruct-v0.2),
but distinct prompt templates specialized for their
particular module-level task, such as generating a
search query or answering a question. We imple-
ment all of our programs and optimizers as exten-
sions to the DSPy framework.

For each dataset, we split the data into training,
development, and test sets. We shuffle the train-
ing set every time before we perform a prompt
or weight optimization, controlled by random
seed. For prompt optimization, we sub-sample
non-overlapping sets of training and validation ex-
amples from the initial training set for each task

and use the BFRS prompt optimizer to optimize the
module level prompts of a given Φ, leaving its un-
derlying LM weights untouched. For weight opti-
mization, we use all the available training examples
as potential candidates to generate the data for fine-
tuning Φ’s LM weights and pass them to the BFT
weight optimizer, which: (1) runs a given Φ on all
the training examples, (2) keeps the traces where
the final output of Φ was correct and filters out
the rest, (3) gets module level prompt-completion
pairs for each trace, (4) creates new pairs by re-
placing the prompt generated by Φ with a vanilla
prompt, (5) combines all the module level prompt-
completion pairs into one dataset, (6) fine-tunes
Φ’s LM weights on this dataset, and finally, (7) re-
turns an updated Φ where the LM weights of all
the modules are set to the fine-tuned LM. We use
the Low Rank Adaptation (LoRA; Hu et al. 2022)
method to fine-tune our LMs.

The full text for our programs and the vanilla
prompts are shared in Appendix A. The license
information for all LMs and datasets used as well
as our implementation details such as hyperparam-
eters and software are reported in Appendix B and
Appendix C, respectively.

Multi-hop Reasoning HotPotQA (in the “full-
wiki” setting) is a question answering task in which
systems must find two Wikipedia page abstracts out
of a corpus of 5 million via search and use them
to answer a factoid question. Therefore it can be

implemented as a program that has three LM mod-
ules: the first two for generating search queries
(i.e., hops) and the last one for generating an an-
swer. Each module uses Chain-of-Thought (CoT;
Wei et al. 2022) to generate its outputs, produc-
ing a reasoning string before the search query or
the answer. Search queries are passed to a frozen
ColBERTv2 (Santhanam et al., 2022) retriever. Ac-
curacy is measured using the exact match score
of the answer with the ground truth answer for
the given question, after normalizing case, strip-
ping surrounding whitespace characters, and re-
moving punctuation. We use the following splits
for HotPotQA: 1000 training examples and 500 de-
velopment examples drawn from the original train-
ing set, along with 1500 test examples drawn from
the original validation set, since the original test
set is not public. We sub-sample 100 and 250 non-
overlapping examples for the prompt optimization
training and validation sets, respectively.

Arithmetic Reasoning GSM8K is a benchmark
consisting of grade school math problems. We im-
plement it as an LM program with a single module
using CoT prompting, where the LM generates a
reasoning string followed by an answer. We mea-
sure accuracy by extracting the last number from
the first line of the model’s response and comparing
it to the ground truth response. For GSM8K, we use
a training set of 1000 examples and a development
set of 500 examples, both sampled from the origi-
nal training set. We use all the 1319 test examples
available for our test set. We use 100 and 250 non-
overlapping examples for training and validation
sets used during prompt optimization.

Classification Iris is a classic classification
task, where the goal is to classify species of Iris
flowers. We use a single-module CoT DSPy pro-
gram for Iris, with the goal of assessing whether
it being a feature-based classification task gives
a large advantage to methods based entirely on
gradient descent (fine-tuning). This tests the ex-
trapolation of our hypothesis to a different setting
from the other two tasks. We measure accuracy
using the exact match score of the answer and the
correct answer given a question after normalizing
both, as is the case for HotPotQA. The Iris dataset
has a total of 150 examples, from which we create
training, development, and test splits of equal size.
We sub-sample 15 and 35 non-overlapping exam-
ples to be used as the training and validation sets
for prompt optimization, respectively.

5 Results & Discussion

Held-out test set performance of the strategies de-
scribed in Section 3 is shared in Table 1. Reported
values are averaged across three runs with unique
random seeds. Results for the individual runs are
reported separately in Appendix D.

In 7 out of the 9 dataset and LM pairs,
we observe that the best-performing strategies
are the strategies that utilize prompt (Π) and
weight (Θ) optimization steps together, although
there is no clear winner among the benchmarked
BetterTogether strategies that optimize both.
Overall, optimizing prompts is essential on all the
tasks, but optimizing prompts and weights together
leads to strong gains over the best setting that only
optimizes one of the two.

In summary, we have proposed to alternate
between optimizing prompts and fine-tuning LM
weights and explored a few strategies for doing
so. In experiments with multi-hop QA (HotPotQA),
mathematical reasoning (GSM8K), and feature-based
classification (Iris), we show that our strategies
are highly effective for getting an LM to teach itself
to perform an LM program via bootstrapping, lead-
ing to 5–78% gains for HotPotQA, 2.5–10% gains
for GSM8K, and 3.5–88% gains for Iris.

6 Limitations

While this paper presents strong evidence from nine
cases, spanning three tasks (and their correspond-
ing LM programs) and three LMs, it is possible
that other tasks, programs, or LMs will change the
pattern in unforeseen ways. In particular, we have
only experimented with weight optimization in the
form of LoRA fine-tuning of pre-trained models. It
is in principle possible that some other fine-tuning
strategy would be so powerful and cost-effective as
to remove the need for prompt optimization.

In addition, though we expect our findings to in-
form many researchers and practitioners interested
in optimizing LM programs, and encourage them
to explore optimizing prompts and fine-tuning LM
weights together, we do not yet understand why
both are important. The role of prompt optimiza-
tion and the role of fine-tuning in multi-stage LM
programs are both new, and the relative lack of un-
derstanding of these roles in the emerging literature
could pose risks in unanticipated interactions be-
tween these components, compared with standard
gradient descent for neural networks, which has
been studied for decades.

Acknowledgments

D.S. is supported by Ravi Family Graduate Fellow-
ship. This work was partially supported by IBM
as a founding member of the Stanford Institute for
Human-Centered Artificial Intelligence (HAI), and
by the HAI Hoffman–Yee Grant “Dendritic Com-
putation for Knowledge Systems”.

References
Luca Beurer-Kellner, Marc Fischer, and Martin Vechev.

2023. Prompting is programming: A query language
for large language models. Proc. ACM Program.
Lang., 7(PLDI).

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian,
Mark Chen, Heewoo Jun, Lukasz Kaiser, Matthias
Plappert, Jerry Tworek, Jacob Hilton, Reiichiro
Nakano, Christopher Hesse, and John Schulman.
2021. Training verifiers to solve math word prob-
lems. Preprint, arXiv:2110.14168.

David Dohan, Winnie Xu, Aitor Lewkowycz, Ja-
cob Austin, David Bieber, Raphael Gontijo Lopes,
Yuhuai Wu, Henryk Michalewski, Rif A. Saurous,
Jascha Sohl-dickstein, Kevin Murphy, and Charles
Sutton. 2022. Language model cascades. Preprint,
arXiv:2207.10342.

Karel D’Oosterlinck, Omar Khattab, François Remy,
Thomas Demeester, Chris Develder, and Christopher
Potts. 2024. In-context learning for extreme multi-
label classification. Preprint, arXiv:2401.12178.

Ronald A. Fisher. 1988. Iris. UCI Machine Learning
Repository.

Kelvin Guu, Kenton Lee, Zora Tung, Panupong Pasupat,
and Ming-Wei Chang. 2020. Retrieval augmented
language model pre-training. In Proceedings of the
37th International Conference on Machine Learning,
ICML 2020, 13-18 July 2020, Virtual Event, volume
119 of Proceedings of Machine Learning Research,
pages 3929–3938. PMLR.

Edward J. Hu, Yelong Shen, Phillip Wallis, Zeyuan
Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang, and
Weizhu Chen. 2022. Lora: Low-rank adaptation of
large language models. In The Tenth International
Conference on Learning Representations, ICLR 2022,
Virtual Event, April 25-29, 2022. OpenReview.net.

HuggingFace. 2023. Text generation inference.

Albert Q. Jiang, Alexandre Sablayrolles, Arthur Men-
sch, Chris Bamford, Devendra Singh Chaplot, Diego
de las Casas, Florian Bressand, Gianna Lengyel, Guil-
laume Lample, Lucile Saulnier, Lélio Renard Lavaud,
Marie-Anne Lachaux, Pierre Stock, Teven Le Scao,
Thibaut Lavril, Thomas Wang, Timothée Lacroix,
and William El Sayed. 2023a. Mistral 7b. Preprint,
arXiv:2310.06825.

Zhengbao Jiang, Frank Xu, Luyu Gao, Zhiqing Sun,
Qian Liu, Jane Dwivedi-Yu, Yiming Yang, Jamie
Callan, and Graham Neubig. 2023b. Active retrieval
augmented generation. In Proceedings of the 2023
Conference on Empirical Methods in Natural Lan-
guage Processing, pages 7969–7992, Singapore. As-
sociation for Computational Linguistics.

Omar Khattab, Christopher Potts, and Matei A. Zaharia.
2021. Baleen: Robust multi-hop reasoning at scale
via condensed retrieval. In Advances in Neural In-
formation Processing Systems 34: Annual Confer-
ence on Neural Information Processing Systems 2021,
NeurIPS 2021, December 6-14, 2021, virtual, pages
27670–27682.

Omar Khattab, Keshav Santhanam, Xiang Lisa
Li, David Hall, Percy Liang, Christopher Potts,
and Matei Zaharia. 2022. Demonstrate-search-
predict: Composing retrieval and language mod-
els for knowledge-intensive nlp. ArXiv preprint,
abs/2212.14024.

Omar Khattab, Arnav Singhvi, Paridhi Maheshwari,
Zhiyuan Zhang, Keshav Santhanam, Sri Vard-
hamanan A, Saiful Haq, Ashutosh Sharma, Thomas T.
Joshi, Hanna Moazam, Heather Miller, Matei Za-
haria, and Christopher Potts. 2024. DSPy: Com-
piling declarative language model calls into state-
of-the-art pipelines. In The Twelfth International
Conference on Learning Representations.

Patrick S. H. Lewis, Ethan Perez, Aleksandra Pik-
tus, Fabio Petroni, Vladimir Karpukhin, Naman
Goyal, Heinrich Küttler, Mike Lewis, Wen-tau Yih,
Tim Rocktäschel, Sebastian Riedel, and Douwe
Kiela. 2020. Retrieval-augmented generation for
knowledge-intensive NLP tasks. In Advances in Neu-
ral Information Processing Systems 33: Annual Con-
ference on Neural Information Processing Systems
2020, NeurIPS 2020, December 6-12, 2020, virtual.

Xinbei Ma, Yeyun Gong, Pengcheng He, Hai Zhao,
and Nan Duan. 2023. Query rewriting in retrieval-
augmented large language models. In Proceedings of
the 2023 Conference on Empirical Methods in Natu-
ral Language Processing, pages 5303–5315, Singa-
pore. Association for Computational Linguistics.

Dirk Merkel. 2014. Docker: lightweight linux con-
tainers for consistent development and deployment.
Linux J., 2014(239).

MetaAI. 2024. Meta llama 3.

Krista Opsahl-Ong, Michael J Ryan, Josh Purtell, David
Broman, Christopher Potts, Matei Zaharia, and Omar
Khattab. 2024. Optimizing instructions and demon-
strations for multi-stage language model programs.

Mohammadreza Pourreza and Davood Rafiei. 2023.
DIN-SQL: decomposed in-context learning of text-
to-sql with self-correction. In Advances in Neural
Information Processing Systems 36: Annual Confer-
ence on Neural Information Processing Systems 2023,
NeurIPS 2023, New Orleans, LA, USA, December 10
- 16, 2023.

https://doi.org/10.1145/3591300
https://doi.org/10.1145/3591300
https://arxiv.org/abs/2110.14168
https://arxiv.org/abs/2110.14168
https://arxiv.org/abs/2207.10342
https://arxiv.org/abs/2401.12178
https://arxiv.org/abs/2401.12178
https://doi.org/10.24432/C56C76
http://proceedings.mlr.press/v119/guu20a.html
http://proceedings.mlr.press/v119/guu20a.html
https://openreview.net/forum?id=nZeVKeeFYf9
https://openreview.net/forum?id=nZeVKeeFYf9
https://huggingface.co/docs/text-generation-inference
https://arxiv.org/abs/2310.06825
https://doi.org/10.18653/v1/2023.emnlp-main.495
https://doi.org/10.18653/v1/2023.emnlp-main.495
https://proceedings.neurips.cc/paper/2021/hash/e8b1cbd05f6e6a358a81dee52493dd06-Abstract.html
https://proceedings.neurips.cc/paper/2021/hash/e8b1cbd05f6e6a358a81dee52493dd06-Abstract.html
https://arxiv.org/abs/2212.14024
https://arxiv.org/abs/2212.14024
https://arxiv.org/abs/2212.14024
https://openreview.net/forum?id=sY5N0zY5Od
https://openreview.net/forum?id=sY5N0zY5Od
https://openreview.net/forum?id=sY5N0zY5Od
https://proceedings.neurips.cc/paper/2020/hash/6b493230205f780e1bc26945df7481e5-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/6b493230205f780e1bc26945df7481e5-Abstract.html
https://doi.org/10.18653/v1/2023.emnlp-main.322
https://doi.org/10.18653/v1/2023.emnlp-main.322
https://ai.meta.com/blog/meta-llama-3/
https://arxiv.org/abs/2406.11695
https://arxiv.org/abs/2406.11695
http://papers.nips.cc/paper_files/paper/2023/hash/72223cc66f63ca1aa59edaec1b3670e6-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2023/hash/72223cc66f63ca1aa59edaec1b3670e6-Abstract-Conference.html

Ofir Press, Muru Zhang, Sewon Min, Ludwig Schmidt,
Noah Smith, and Mike Lewis. 2023. Measuring and
narrowing the compositionality gap in language mod-
els. In Findings of the Association for Computational
Linguistics: EMNLP 2023, pages 5687–5711, Singa-
pore. Association for Computational Linguistics.

Peng Qi, Haejun Lee, Tg Sido, and Christopher Man-
ning. 2021. Answering open-domain questions of
varying reasoning steps from text. In Proceedings of
the 2021 Conference on Empirical Methods in Natu-
ral Language Processing, pages 3599–3614, Online
and Punta Cana, Dominican Republic. Association
for Computational Linguistics.

Keshav Santhanam, Omar Khattab, Jon Saad-Falcon,
Christopher Potts, and Matei Zaharia. 2022. Col-
BERTv2: Effective and efficient retrieval via
lightweight late interaction. In Proceedings of the
2022 Conference of the North American Chapter of
the Association for Computational Linguistics: Hu-
man Language Technologies, pages 3715–3734, Seat-
tle, United States. Association for Computational
Linguistics.

Imanol Schlag, Sainbayar Sukhbaatar, Asli Celikyilmaz,
Wen tau Yih, Jason Weston, Jürgen Schmidhuber,
and Xian Li. 2023. Large language model programs.
Preprint, arXiv:2305.05364.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Al-
bert, Amjad Almahairi, Yasmine Babaei, Nikolay
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti
Bhosale, Dan Bikel, Lukas Blecher, Cristian Canton
Ferrer, Moya Chen, Guillem Cucurull, David Esiobu,
Jude Fernandes, Jeremy Fu, Wenyin Fu, Brian Fuller,
Cynthia Gao, Vedanuj Goswami, Naman Goyal, An-
thony Hartshorn, Saghar Hosseini, Rui Hou, Hakan
Inan, Marcin Kardas, Viktor Kerkez, Madian Khabsa,
Isabel Kloumann, Artem Korenev, Punit Singh Koura,
Marie-Anne Lachaux, Thibaut Lavril, Jenya Lee, Di-
ana Liskovich, Yinghai Lu, Yuning Mao, Xavier Mar-
tinet, Todor Mihaylov, Pushkar Mishra, Igor Moly-
bog, Yixin Nie, Andrew Poulton, Jeremy Reizen-
stein, Rashi Rungta, Kalyan Saladi, Alan Schelten,
Ruan Silva, Eric Michael Smith, Ranjan Subrama-
nian, Xiaoqing Ellen Tan, Binh Tang, Ross Tay-
lor, Adina Williams, Jian Xiang Kuan, Puxin Xu,
Zheng Yan, Iliyan Zarov, Yuchen Zhang, Angela Fan,
Melanie Kambadur, Sharan Narang, Aurelien Ro-
driguez, Robert Stojnic, Sergey Edunov, and Thomas
Scialom. 2023. Llama 2: Open foundation and fine-
tuned chat models.

Vijay Viswanathan, Chenyang Zhao, Amanda Bertsch,
Tongshuang Wu, and Graham Neubig. 2023.
Prompt2Model: Generating deployable models from
natural language instructions. In Proceedings of
the 2023 Conference on Empirical Methods in Nat-
ural Language Processing: System Demonstrations,
pages 413–421, Singapore. Association for Compu-
tational Linguistics.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten
Bosma, Brian Ichter, Fei Xia, Ed H. Chi, Quoc V. Le,

and Denny Zhou. 2022. Chain-of-thought prompting
elicits reasoning in large language models. In Ad-
vances in Neural Information Processing Systems 35:
Annual Conference on Neural Information Process-
ing Systems 2022, NeurIPS 2022, New Orleans, LA,
USA, November 28 - December 9, 2022.

Zhilin Yang, Peng Qi, Saizheng Zhang, Yoshua Bengio,
William Cohen, Ruslan Salakhutdinov, and Christo-
pher D. Manning. 2018. HotpotQA: A dataset for
diverse, explainable multi-hop question answering.
In Proceedings of the 2018 Conference on Empiri-
cal Methods in Natural Language Processing, pages
2369–2380, Brussels, Belgium. Association for Com-
putational Linguistics.

Eric Zelikman, Yuhuai Wu, Jesse Mu, and Noah D.
Goodman. 2022. Star: Bootstrapping reasoning with
reasoning. In Advances in Neural Information Pro-
cessing Systems 35: Annual Conference on Neural
Information Processing Systems 2022, NeurIPS 2022,
New Orleans, LA, USA, November 28 - December 9,
2022.

https://doi.org/10.18653/v1/2023.findings-emnlp.378
https://doi.org/10.18653/v1/2023.findings-emnlp.378
https://doi.org/10.18653/v1/2023.findings-emnlp.378
https://doi.org/10.18653/v1/2021.emnlp-main.292
https://doi.org/10.18653/v1/2021.emnlp-main.292
https://doi.org/10.18653/v1/2022.naacl-main.272
https://doi.org/10.18653/v1/2022.naacl-main.272
https://doi.org/10.18653/v1/2022.naacl-main.272
https://arxiv.org/abs/2305.05364
https://arxiv.org/abs/2307.09288
https://arxiv.org/abs/2307.09288
https://doi.org/10.18653/v1/2023.emnlp-demo.38
https://doi.org/10.18653/v1/2023.emnlp-demo.38
http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html
https://doi.org/10.18653/v1/D18-1259
https://doi.org/10.18653/v1/D18-1259
http://papers.nips.cc/paper_files/paper/2022/hash/639a9a172c044fbb64175b5fad42e9a5-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2022/hash/639a9a172c044fbb64175b5fad42e9a5-Abstract-Conference.html

Appendices

A Programs

The DSPy programs for HotPotQA, GSM8K, and Iris are shared in Python Snippets A.1, A.2, A.3,
respectively. Tables A.1, A.2, A.3 show the vanilla (zero-shot) programs generated with these programs,
along with sample model completions.

1 class HotPotQAProgram(dspy.Module):
2 def __init__(self , passages_per_hop =3):
3 super().__init__ ()
4

5 self.retrieve = dspy.Retrieve(k=passages_per_hop)
6 self.generate_query = [dspy.ChainOfThought("context , question ->

search_query") for _ in range (2)]
7 self.generate_answer = dspy.ChainOfThought("context , question -> answer")
8

9 def forward(self , question):
10 context = []
11

12 for hop in range (2):
13 search_query = self.generate_query[hop](context=context , question=

question).search_query
14 passages = self.retrieve(search_query).passages
15 context = dsp.utils.deduplicate(context + passages)
16

17 return self.generate_answer(context=context , question=question).copy(
context=context)

Python Snippet A.1: DSPy program for HotPotQA, consisting of three Chain-of-Thought (CoT) LM modules,
along with a frozen retriever. Each LM module in the program uses its own prompt and LM weights under the hood.

Table A.1: Vanilla (zero-shot) prompts for the HotPotQA program given in Python Snippet A.1 with three LM
modules, each with corresponding prompts and LM weights. (1) the generate_query[0] module prompts the corre-
sponding LM to generate a search query given a question along with an empty context; (2) the generate_query[1]
module prompts the corresponding model to generate a search query given the context paragraphs retrieved using the
search query outputted by the prior module; (3) the generate_answer module prompts the corresponding LM to
answer the question given the context paragraphs retrieved by the earlier modules. The green text shows the model
completions obtained by setting all the modules of the program to use mistralai/Mistral-7b-Instruct-v0.2
as their corresponding LM. The correct answer to the question is indeed Key deer as predicted.

Module Label Prompt

generate_query[0] Given the fields `context`, `question`, produce the fields `search_query`.

Follow the following format.

Context: ${context}

Question: ${question}

Reasoning: Let's think step by step in order to ${produce the
search_query}. We ...

Search Query: ${search_query}

Context: N/A

Question: What animal subject to the Foster's rule is the smallest North
American deer?

Reasoning: Let's think step by step in order to find the smallest North
American deer subject to the Foster's rule.

1. The Foster's rule is a mathematical formula used to estimate the body
weight of large mammals based on their ear surface area.
2. To apply the Foster's rule, we need to find the ear surface area of the
deer species in question.
3. We don't have the ear surface area of each North American deer species
in the context, so we need to search for it.
4. Therefore, our search query should include the keywords "North American
deer," "ear surface area," and "Foster's rule."

Search Query: North American deer ear surface area Foster's rule smallest
species

Module Label Prompt

generate_query[1] Given the fields `context`, `question`, produce the fields `search_query`.

Follow the following format.

Context: ${context}

Question: ${question}

Reasoning: Let's think step by step in order to ${produce the
search_query}. We ...

Search Query: ${search_query}

Context:
[1] «Key deer | The Key deer ("Odocoileus virginianus clavium") is an
endangered deer that lives only in the Florida Keys. It is a subspecies of
the white-tailed deer ("O. virginianus"). It is the smallest North American
deer.»
[2] «North American least shrew | The North American least shrew
("Cryptotis parva") is one of the smallest mammals, growing to be only up
to 3 inches long. The North American least shrew has a long pointed snout
and a tail never more than twice the length of its hind foot. It has a
dense fur coat that is either grayish-brown or reddish-brown with a white
belly. Its fur becomes lighter in the summer and darker in the winter.
Although similar in appearance to several species of rodents, all shrews
are members of the order Soricomorpha and should not be mistaken for a
member of the Rodentia order. The North American least shrew's eyes are
small and its ears are completely concealed within its short fur, giving it
very poor eyesight and hearing.»
[3] «Wynnea americana | Wynnea americana, commonly known as moose antlers
or rabbit ears, is a species of fungus in the family Sarcoscyphaceae. This
uncommon inedible species is recognizable by its spoon-shaped or rabbit-ear
shaped fruit bodies that may reach up to 13 cm tall. It has dark brown and
warty outer surfaces, while the fertile spore-bearing inner surface is
orange to pinkish to reddish brown. The fruit bodies grow clustered
together from large underground masses of compacted mycelia known as
sclerotia. In eastern North America, where it is typically found growing in
the soil underneath hardwood trees, it is found from New York to Michigan
south to Mexico. The species has also been collected from Costa Rica,
India, and Japan.»

Question: What animal subject to the Foster's rule is the smallest North
American deer?

Reasoning: Let's think step by step in order to produce the search query.
We need to find the smallest North American deer, which is mentioned in the
context as the Key deer. Therefore, the search query should include the
terms "Key deer" and "smallest North American deer".

Search Query: Key deer smallest North American deer

Module Label Prompt

generate_answer Given the fields `context`, `question`, produce the fields `answer`.

Follow the following format.

Context: ${context}

Question: ${question}

Reasoning: Let's think step by step in order to ${produce the answer}. We
...

Answer: ${answer}

Context:
[1] «Key deer | The Key deer ("Odocoileus virginianus clavium") is an
endangered deer that lives only in the Florida Keys. It is a subspecies of
the white-tailed deer ("O. virginianus"). It is the smallest North American
deer.»
[2] «North American least shrew | The North American least shrew
("Cryptotis parva") is one of the smallest mammals, growing to be only up
to 3 inches long. The North American least shrew has a long pointed snout
and a tail never more than twice the length of its hind foot. It has a
dense fur coat that is either grayish-brown or reddish-brown with a white
belly. Its fur becomes lighter in the summer and darker in the winter.
Although similar in appearance to several species of rodents, all shrews
are members of the order Soricomorpha and should not be mistaken for a
member of the Rodentia order. The North American least shrew's eyes are
small and its ears are completely concealed within its short fur, giving it
very poor eyesight and hearing.»
[3] «Wynnea americana | Wynnea americana, commonly known as moose antlers
or rabbit ears, is a species of fungus in the family Sarcoscyphaceae. This
uncommon inedible species is recognizable by its spoon-shaped or rabbit-ear
shaped fruit bodies that may reach up to 13 cm tall. It has dark brown and
warty outer surfaces, while the fertile spore-bearing inner surface is
orange to pinkish to reddish brown. The fruit bodies grow clustered
together from large underground masses of compacted mycelia known as
sclerotia. In eastern North America, where it is typically found growing in
the soil underneath hardwood trees, it is found from New York to Michigan
south to Mexico. The species has also been collected from Costa Rica,
India, and Japan.»
[4] «Pudú | The pudús (Mapudungun "püdü" or "püdu", Spanish: pudú ,]) are
two species of South American deer from the genus Pudu, and are the world's
smallest deer. The name is a loanword from Mapudungun, the language of the
indigenous Mapuche people of southern Chile and south-western Argentina.
The two species of pudús are the northern pudú ("Pudu mephistophiles") from
Venezuela, Colombia, Ecuador, and Peru, and the southern pudú ("Pudu puda";
sometimes incorrectly modified to "Pudu pudu") from southern Chile and
south-western Argentina. Pudús range in size from 32 to tall, and up to 85
cm long. As of 2009, the southern pudu is classified as near threatened,
while the northern pudu is classified as vulnerable in the IUCN Red List.»

Question: What animal subject to the Foster's rule is the smallest North
American deer?

Reasoning: Let's think step by step in order to find the answer. We know
that the smallest North American deer is mentioned in the context. We also
know that the Foster's rule refers to a group of animals. In this case, the
Foster's rule refers to endangered deer species that live only in the
Florida Keys. Therefore, the Key deer is the answer.

Answer: Key deer

1 class CoTProgram(dspy.Module):
2 def __init__(self):
3 super().__init__ ()
4 self.generate_answer = dspy.ChainOfThought("question -> answer")
5

6 def forward(self , question):
7 return self.generate_answer(question=question)

Python Snippet A.2: DSPy program for GSM8K.

Table A.2: Vanilla (zero-shot) prompts for the GSM8K program given in Python Snippet A.2 with one LM
module. The generate_answer module prompts the corresponding LM to answer a grade school math prob-
lem. The green text shows the model completion obtained by setting all the modules of the program to use
mistralai/Mistral-7b-Instruct-v0.2 as their corresponding LM. The model’s response is evaluated as correct
because the correct answer (1200) is contained in the first line of model’s generation.

Module Label Prompt

generate_answer Given the fields `question`, produce the fields `answer`.

Follow the following format.

Question: ${question}
Reasoning: Let's think step by step in order to ${produce the answer}. We
...
Answer: ${answer}

Question: Micah can type 20 words per minute and Isaiah can type 40 words
per minute. How many more words can Isaiah type than Micah in an hour?
Reasoning: Let's think step by step in order to find out how many more
words Isaiah can type than Micah in an hour. We know that Micah can type 20
words per minute and Isaiah can type 40 words per minute. In one minute,
Isaiah types twice as many words as Micah. In 60 minutes, Isaiah types 60
minutes * 40 words per minute = <<60*40=2400>>2400 words. Micah types 60
minutes * 20 words per minute = <<60*20=1200>>1200 words. The difference
between the number of words Isaiah and Micah can type in an hour is 2400
words - 1200 words = <<2400-1200=1200>>1200 words.

Answer: Isaiah can type 1200 more words than Micah in an hour.

1 class IrisSignature(dspy.Signature):
2 "Given the petal and sepal dimensions in cm, predict the iris species."
3

4 petal_length = dspy.InputField ()
5 petal_width = dspy.InputField ()
6 sepal_length = dspy.InputField ()
7 sepal_width = dspy.InputField ()
8 answer = dspy.OutputField(desc='setosa , versicolor , or virginica ')
9

10

11 class IrisProgram(dspy.Module):
12 def __init__(self):
13 self.generate_answer = dspy.ChainOfThought(IrisSignature)
14

15 def forward(self , petal_length , petal_width , sepal_length , sepal_width):
16 return self.generate_answer(petal_length=petal_length , petal_width=

petal_width , sepal_length=sepal_length , sepal_width=sepal_width)

Python Snippet A.3: DSPy program for Iris, provided to us by the DSPy team.

Table A.3: Vanilla (zero-shot) prompts for the Iris program given in Python Snippet A.3 with one LM module.
The generate_answer module prompts the corresponding LM to classify the Iris flowers into one of the following
species given their features: Setosa, Versicolor, Virginica. The green text shows the model completion obtained by
setting all the modules of the program to use mistralai/Mistral-7b-Instruct-v0.2 as their corresponding LM.
The correct answer is Setosa, just as predicted.

Module Label Prompt

generate_answer Given the petal and sepal dimensions in cm, predict the iris species.

Follow the following format.

Petal Length: ${petal_length}

Petal Width: ${petal_width}

Sepal Length: ${sepal_length}

Sepal Width: ${sepal_width}

Reasoning: Let's think step by step in order to ${produce the answer}. We
...

Answer: setosa, versicolor, or virginica

Petal Length: 1.4

Petal Width: 0.2

Sepal Length: 5.0

Sepal Width: 3.6

Reasoning: Let's think step by step in order to predict the iris species.
We will compare the given measurements with the average measurements of
each iris species. 1. Setosa: The average petal length for setosa is 1.3 cm
and the average petal width is 0.3 cm. The given petal length (1.4 cm) is
slightly larger than the average, but the petal width (0.2 cm) is smaller
than the average. However, the sepal dimensions (5.0 cm and 3.6 cm) are
within the range of setosa. Based on these measurements, it is likely that
the iris is setosa. 2. Versicolour: The average petal length for
versicolour is 4.2 cm and the average petal width is 1.4 cm. The given
petal length (1.4 cm) is smaller than the average, and the petal width (0.2
cm) is much smaller than the average. The sepal dimensions (5.0 cm and 3.6
cm) are also within the range of versicolour. However, the small petal
dimensions suggest that it is less likely to be versicolour. 3. Virginica:
The average petal length for virginica is 5.8 cm and the average petal
width is 2.0 cm. The given petal length (1.4 cm) is much smaller than the
average, and the petal width (0.2 cm) is much smaller than the average. The
sepal dimensions (5.0 cm and 3.6 cm) are also within the range of
virginica. However, the small petal dimensions suggest that it is less
likely to be virginica. Based on the given measurements, it is most likely
that the iris is setosa.

Answer: setosa.

B Asset Information

We share the associated licenses for the models and datasets we used below. For models, we list the
specific HuggingFace model id we used to retrieve the respective weights.

1. mistralai/Mistral-7b-Instruct-v0.2: Apache License 2.0

2. meta-llama/Llama-2-7b-chat-hf: Meta Llama 2 Community License at https://ai.meta.
com/llama/license/

3. meta-llama/Meta-Llama-3-8B-Instruct: Meta Llama 3 Community License at https://
llama.meta.com/llama3/license/

4. HotPotQA: Apache License 2.0

5. GSM8K: MIT License

6. Iris: Creative Commons Attribution 4.0 International (CC BY 4.0)

All the LMs used in this work are intended for use in English.

C Implementation Details

In this section, we share the implementation details as it pertains to the LM inference and fine-tuning
infrastructure, as well as compute requirements.

Inference For inference, we host our models in Docker (Merkel, 2014) instances through
HuggingFace’s text-generation-inference (HuggingFace, 2023) toolkit. We keep the sampling
parameters the same across all experiments, using TopK sampling with a temperature of 0.1, and top_k
of 0.97, until the model either generates a stopping string or a total of 1024 tokens including the tokens in
the prompt.

Prompt Optimization For prompt optimization, we use the BootstrapFewShotRS (BFRS) optimizer
from the DSPy library. In particular, we allow BFRS to randomly search 6 candidate programs using up to
3 few-shot examples for each module prompt.

Fine-tuning For fine-tuning, we use Low Rank Adaptation (LoRA; Hu et al. 2022) to train the query
and key self-attention layers of our models, using a LoRA rank of 32, alpha of 64, with no dropout. We
fine-tune all of our models for 5 epochs using bfloat16 precision, with a learning rate of 1e−5 and an
effective batch size of 8.Compute The BetterTogether strategies explored in this paper are naturally
more expensive to run when compared to just prompt optimizing or fine-tuning. How these two steps
compare to each other in terms of compute requirements or wall clock time depends on the particular
settings used for each as well as the size of the dataset used. Total approximate GPU hours to produce
Table 1 was ≈75 hours, using A100 GPUs.

D Extended Results

The results shared in Table 1 are the average of three runs. Tables D.1, D.2, and D.3 show the breakdown
of the individual runs for HotPotQA, GSM8K, and Iris, respectively.

https://ai.meta.com/llama/license/
https://ai.meta.com/llama/license/
https://llama.meta.com/llama3/license/
https://llama.meta.com/llama3/license/

Strategy
mistral-7b-instruct-v0.2 llama-2-7b-chat llama-3-8b-instruct

Run 1 Run 2 Run 3 Avg Run 1 Run 2 Run 3 Avg Run 1 Run 2 Run 3 Avg

Baseline Strategies

Vanilla Zero-shot 17.2 17.2 17.2 17.2 13.2 13.2 13.2 13.2 31.6 31.6 31.6 31.6
Prompt Optimization (Π) 32.7 34.7 34.0 33.8 33.3 33.3 33.4 33.3 45.7 47.4 47.5 46.9
Weight Optimization (Θ) 22.0 23.1 23.5 22.9 12.4 11.8 12.3 12.2 34.9 35.3 34.3 34.8
Π → Π 31.7 36.0 33.7 33.8 31.7 33.1 33.1 32.6 47.3 45.4 46.7 46.5
Θ → Θ 24.1 23.9 23.9 24.0 12.4 13.5 13.3 13.0 35.1 34.1 34.1 34.4

BetterTogether Strategies

Π → Θ 34.9 39.1 34.9 36.3 32.8 32.3 33.1 32.7 40.6 42.1 45.7 42.8
Θ → Π 29.3 33.8 35.8 33.0 36.0 33.4 33.1 34.2 44.5 40.9 45.3 43.6
Π → Θ → Π 34.9 40.7 37.2 37.6 34.7 34.5 35.3 34.8 46.5 47.1 46.4 46.7

Table D.1: Results of HotPotQA Runs. Percentage accuracies of baseline and BetterTogether strategies on
HotPotQA evaluated on mistral-7b-instruct-v0.2, llama-2-7b-chat, and llama-3-8b-instruct. Reported
are performance of 3 runs on a held-out test set of 1500 examples, using different random seeds. Bold font in the
average columns (Avg) is used to mark the highest score in a given column.

Strategy
mistral-7b-instruct-v0.2 llama-2-7b-chat llama-3-8b-instruct

Run 1 Run 2 Run 3 Avg Run 1 Run 2 Run 3 Avg Run 1 Run 2 Run 3 Avg

Baseline Strategies

Vanilla Zero-shot 40.3 40.3 40.3 40.3 24.0 24.0 24.0 24.0 72.7 72.7 72.7 72.7
Prompt Optimization (Π) 45.0 47.2 47.1 46.4 27.3 25.1 25.5 26.0 76.9 77.9 78.9 77.9
Weight Optimization (Θ) 40.8 40.0 41.2 40.7 23.7 24.2 24.0 24.0 75.7 74.8 74.8 75.1
Π → Π 46.3 47.2 49.6 47.7 28.4 24.0 21.8 24.7 76.5 80.1 76.1 77.6
Θ → Θ 42.9 41.8 43.8 42.8 24.0 24.3 24.0 24.1 52.2 36.6 43.4 44.0

BetterTogether Strategies

Π → Θ 46.4 47.3 48.2 47.3 27.8 28.1 25.9 27.3 77.6 75.4 79.8 77.6
Θ → Π 50.1 46.0 48.8 48.3 26.8 26.1 27.0 26.6 78.5 79.8 78.4 78.9
Π → Θ → Π 44.9 48.5 47.1 46.8 27.1 25.9 25.9 26.3 77.6 75.4 77.8 77.0

Table D.2: Results of GSM8K Runs. Percentage accuracies of baseline and BetterTogether strategies on GSM8K
evaluated on mistral-7b-instruct-v0.2, llama-2-7b-chat, and llama-3-8b-instruct. Reported are perfor-
mance of 3 runs on a held-out test set of 1319 examples, using different random seeds. Bold font in the average
columns (Avg) is used to mark the highest score in a given column.

Strategy
mistral-7b-instruct-v0.2 llama-2-7b-chat llama-3-8b-instruct

Run 1 Run 2 Run 3 Avg Run 1 Run 2 Run 3 Avg Run 1 Run 2 Run 3 Avg

Baseline Strategies

Vanilla Zero-shot 26.0 26.0 26.0 26.0 0.0 0.0 0.0 0.0 48.0 48.0 48.0 48.0
Prompt Optimization (Π) 52.0 54.0 66.0 57.3 44.0 68.0 58.0 56.7 62.0 96.0 80.0 79.3
Weight Optimization (Θ) 24.0 34.0 30.0 29.3 – – – – 38.0 40.0 34.0 37.3
Π → Π 48.0 64.0 66.0 59.3 66.0 70.0 56.0 64.0 70.0 94.0 82.0 82.0
Θ → Θ 40.0 36.0 38.0 38.0 – – – – 44.0 36.0 38.0 39.3

BetterTogether Strategies

Π → Θ 32.0 26.0 34.0 30.7 30.0 26.0 24.0 26.7 50.0 42.0 40.0 44.0
Θ → Π 80.0 54.0 66.0 66.7 – – – – 78.0 78.0 80.0 78.7
Π → Θ → Π 52.0 44.0 62.0 52.7 62.0 70.0 64.0 65.3 74.0 80.0 84.0 79.3

Table D.3: Results of Iris Runs. Percentage accuracies of baseline and BetterTogether strategies on Iris
evaluated on mistral-7b-instruct-v0.2, llama-2-7b-chat, and llama-3-8b-instruct. Reported are perfor-
mance of 3 runs on a held-out test set of 50 examples, using different random seeds. Bold font in the average
columns (Avg) is used to mark the highest score in a given column. Strategies where weight optimization is the first
step use the vanilla (zero-shot) strategy to generate the initial fine-tuning dataset. If a model generates very few or
no correct outputs under the vanilla strategy on the training set used to bootstrap the fine-tuning data, there will not
be a sufficient dataset for fine-tuning. These settings are marked with “–”.

	Introduction
	Problem Statement
	BetterTogether: Alternating Weight and Prompt Optimization Steps for LM Programs
	Experimental Evaluation
	Results & Discussion
	Limitations
	Programs
	Asset Information
	Implementation Details
	Extended Results

